
Decentralized Universal Network for
Enterprises

Technical Whitepaper: The Dune Network

Dune Foundation & Origin Labs SAS, Paris, France
contact@{dune.network,origin-labs.com} https://dune.network

Revision b7fad8e

September 06, 2019

Abstract

The Dune Network is a novel platform for distributed applications over a
blockchain. Dune Network is not a hard-fork of the Tezos ledger. It started with
its own genesis block on June 24, 2019, but uses an extended version of Tezos’
open-source software as a basis to create a new platform with a focus on the
easy development of distributed applications, thanks to multiple programming
languages and communication technologies with other blockchains. Dune Net-
work is, both, a public ledger that uses a working Liquid Delegated Proof-of-Stake
(LDPOS) with its Dune (DUN) token, and a free software platform that can be
used to instantiate private blockchains, with a focus on security, correctness and
ergonomy.

Introduction
Blockchain technologies are a huge opportunity for businesses, yet, a dangerous

one. The short history of blockchains is sprinkled with stories of huge amounts of
tokens being either stolen, or just lost, because of security or safety issues. It’s all
the more unfortunate that modern technologies can be used to prevent most of these
problems, through strong static typing, program veri�cation, or code certi�cation.

Very few blockchains have taken security issues seriously. Here, we gather both,
security and safety, under the more generic security term. The Tezos ledger is among
them. It uses OCaml, a powerful, yet, very secure programming language as its building
language, while exposing a simple and semantically sound low level language for smart
contracts called Michelson. Also, it uses proof-of-stake (POS) instead of the energy
consuming proof-of-work (POW), in a variant called Liquid Delegated Proof-of-Stake,
for its consensus algorithm, and an on-chain governance for software amendments.
Tezos is also known as one of the biggest ICOs of 2017.

Unfortunately, security technologies are often di�cult to use: very few blockchain
developers are able to develop smart contracts in a language designed for security and
safety; it becomes a real issue for mass adoption. Within an ecosystem where, literally,
hundreds of blockchains are competing for market share, this adoption barrier favors

1

https://dune.network

safety-negligent technologies. The small number of delivered projects on the Tezos
blockchain, compared to the number of announcements, and the general inertia of the
whole Tezos ecosystem are evidence of this problem.

We have started developing the Dune Network on top of the Tezos software,
as an independent blockchain, with a focus on security, but also, on accessibility
for developers and attractivity for users, with an ambition to deliver the �rst fully
distributed, universal, academic-level business-oriented blockchain platform.

All of our work on the Dune Network bene�ts from the vast experience our
technical team gathered during the recent years, working on the prototype of Tezos, its
ICO platform, the Tezos node before launch, TzScan (the most popular block explorer
for Tezos), Liquidity (a smart-contract language for Tezos over Michelson), and Ironmin,
an improved storage layer for Tezos.

Dune Network is a multi-Language blockchain: in addition to high-level lan-
guages on top of Michelson, it provides the ability to develop smart contracts in several
other programming languages, ranging from low to high safety, aiding the developers
progressively raise the safety and correctness standards of their contracts as they
get acquainted with Dune’s technology. Dune’s initial ecosystem has been built to
onboard, train, and proactively support developers targetting the Dune Network.

The Dune Network also features on-chain project governance by the community,
via multiple mechanisms:

1. the election of a Dune Council at the Dune Foundation. (This council is respon-
sible for leading the project from a software and business development point of
view.),

2. a Treasury for grants,

3. and a Veto-system for software amendments.

The Dune Network consists of a complete ecosystem, with block explorers, software
and hardware wallets, and numerous promising dApps, for notarization or �nancial
assets for example. Our prime e�orts will focus on building a rich ecosystem of
applications, accessible across all modern media.

Contents
1 Dune Security and Safety 3

1.1 Security through Programming Languages 4
1.2 Formal Methods: Veri�cation and Certi�cation 4

2 Dune On-Chain Governance 4
2.1 The Dune Foundation . 5
2.2 On-Chain Elections for the Dune Council 6
2.3 Treasury of Token Grants . 6
2.4 Referendum System . 6

3 Dune Smart Contract Languages 7
3.1 Liquidity 2.0 . 7
3.2 Love VM — Long Term Support . 8
3.3 DunePy . 9
3.4 Legacy Languages . 10

2

4 Dune DUN Token and Tezos Airdrop 11
4.1 Initial Supply . 11
4.2 Tezos Airdrop . 11

5 Dune Performance and Management 12

6 Dune Subtokens and Standard Contracts 13
6.1 Preliminary Proposed Standard . 13

6.1.1 Future Token Standards . 14
6.1.2 Standard in Liquidity 2.0 . 14

6.2 Modular Standards . 15
6.3 Integration with Wallets, Block Explorers and dApps 17
6.4 Smart Contract Fees . 17

7 Dune’s Proof-of-Stake Consensus Algorithm 17

8 Dune Ecosystem 18
8.1 Explorer and Wallets . 18
8.2 Bakers and Dapps . 19
8.3 Tezos Legacy . 19
8.4 Dune Validator Program . 20

9 Dune Development Team 20

10 Roadmap and Calendar 20
10.1 Short Term (Public Release) . 21
10.2 Medium Term (First Year) . 21
10.3 Long Term . 21

1 Dune Security and Safety
Focus: security and safety

In traditional �nancial entities, drastic measures and protocols are in place (in
particular on computer and software infrastructure) to manage security risks. Sur-
prisingly, while competing with these entities for the future of �nancial markets,
few blockchains have taken security seriously. Stories of fraud or fraudulent loss are
numerous, sometimes for tens or hundreds of millions of dollars1,2.

Dune Network considers security as a critical concern. It is addressed through
several means, some of which are already deployed and functional. Among them,
is the choice of statically- and strongly-typed programming languages for the node
implementation and the for Smart Contracts. Other means include the development of
formal-methods tools for the veri�cation and the certi�cation of code, both, within
the implementation, and the Smart Contracts

1https://discover.ledger.com/hackstimeline
2https://github.com/kcchu/awesome-smart-contract-bugs

3

https://discover.ledger.com/hackstimeline
https://github.com/kcchu/awesome-smart-contract-bugs

1.1 Security through Programming Languages
All programming languages are not equivalent: some display a smooth learning

curve, whilst others focus on productivity through expressiveness, or on robustness
and safety. All languages make a compromise between such qualities.

The heart of Dune Network, the code of the node, is written in OCaml. OCaml is a
30-year old multi-paradigm programming language, with a prime focus on expressive-
ness and correctness.

Expressiveness comes from the use of a core language with semantics close to a
mathematical speci�cation. OCaml makes expressing complex ideas as easy and short
as writing a mathematical formula.

Correctness comes from the use of strong static typing that enforces a strong
discipline on the use of values and functions, ensuring that all function calls are
veri�ed at compile time and guaranteed to never fail for type errors.

The combination of these two qualities makes OCaml a language that is as concise
and expressive as Python, yet, signi�cantly safer without writing as many tests. OCaml
users are usually recognizable by their faith in their code as soon as the compiler accepts
it.

OCaml has been used for the development of the Dune Network node, client, baker
and endorser. OCaml makes these tools robust, with signi�cantly less bugs than for
other blockchains, while still very easy to maintain and extend.

1.2 Formal Methods: Veri�cation and Certi�cation
Ethereum introduced the possibility to write Turing-complete Smart Contracts.

This power comes with additional vulnerabilities, especially with programming lan-
guages having loose semantics, such as Solidity. Now, there are numerous examples of
huge losses on Ethereum, starting with the USD 50 million loss of The DAO in June,
2016, and many others such as the Polkadot loss of USD 90 million in November, 2017.
Most of these losses could have been avoided with the use of formal methods.

There are usually two methods of addressing such vulnerabilities:

• Veri�cation attempts to prove that a program written in some programming
language meets a set of properties. Model checkers or veri�cation frameworks
with intermediate languages, like Why3, combined with SMT solvers, such as
Alt-Ergo, can be used to perform such a function.

• Certi�cation attempts to directly write the programs in a formal language that
guarantees that a set of properties are met. The most famous framework is Coq,
a proof assistant that can be used to extract programs from mathematical proofs.

The Dune Network development team includes experts in software veri�cation
and formal methods. They will work on the design of a veri�cation platform for Smart
Contracts written in the Liquidity 2.0 language, enabling developers to specify and
verify their own contracts with state-of-the-art veri�cation tools.

2 Dune On-Chain Governance
Focus: governance

The on-chain governance in the Dune Network is divided in three parts:

4

1. Elections of the Dune Council

2. Treasury for Token Grants

3. A Referendum System

Although a few blockchains have adopted on-chain governance to amend the
software of the blockchain itself, we think this governance model is a misunderstanding
of the principles of software development, and open-source software in particular, for
several reasons:

• Some software modi�cations require quick processes, e.g. when �xing bugs or
pushing new important features for example. On-chain governance is too slow3.

• Elections for software modi�cations require voters to understand what they are
voting for. However, few of them have the skills and the will to analyze in-depth
software modi�cations. Voters tend to blindly follow a few experts.

• Many decisions are taken at other levels, outside of this governance model, and
often before software modi�cations are proposed. Voters may only have the
choice between accepting a huge set of modi�cations, or none of them; however
they are not able to choose among them, independently4.

For such reasons (and many smaller ones), the Dune Network uses on-chain
governance to manage not the software, but the project. This project is led by a group
of people, called the Dune Council, taking the decisions on the development of the
network. This group is part of the Dune Foundation and is elected by stake-holders,
akin to a representative democracy.

2.1 The Dune Foundation
The Dune Network is managed by the Dune Foundation. The decisions at the Dune

Foundation are taken by a representative group, the Dune Council. The Dune Council
is elected on-chain by stake-holders of the Dune Network.

The Dune Council is in charge of:

• Formulating a roadmap for the Dune Network development,

• Access rights for developers to the Dune Network’s software repository,

• Upgrades to the protocol,

• Deciding which projects in the ecosystem should be funded by direct grants (an
on-chain treasury is also in place).

The Dune Foundation was initially funded by investors (Venture Capital). After the
initial launch, the Dune Foundation will hold around 4% of the tokens. These tokens
will be used to fund the development of the Dune Network and of its ecosystem.

Resultantly, there will be a need to provide a continuous funding of the Founda-
tion the development of the network. Every transaction on the Dune Network will
contribute 0.07% of the transaction amount, in the form of a transaction reward, to the

3Adopting an amendment in Tezos takes about two months... if accepted.
4In Tezos, there is no other choice for the Babylon amendment, and there was only a small meaningless

di�erence between the 2 Athens amendments.

5

Dune Foundation account. This reward is formed by creating new tokens (like,e.g.,
block rewards), which means it is not a transaction fee. This transaction rewards model
makes the development cost of the network scale proportionnally with its use.

At any point in time, restrictions will limit the Dune Foundation to not own more
than 25,000,000 tokens (less than 5% of the total supply). No transaction rewards will
be credited to the Foundation if this threshold is reached.

The ratio of the transaction rewards may be adjusted by the Dune Council de-
pending on the observed behavior, either, by increasing rewards with a view to source
funds needed by the ecosystem, or to decrease to manage in�ation.

2.2 On-Chain Elections for the Dune Council
The Dune Council will be composed of nine (9) members from the community,

divided into �ve (5) groups:

• Two in the business group

• Two in the technical group

• Two in the marketing group

• Two in the community group

• One in the academic group

The above structure is subject to change in the future, to better adapt to the
evolution of Dune Network.

An on-chain governance mechanism will be used to elect members of the Dune
Council: two (2) members will be changed every six (6) months. Any member of the
community will be able to candidate o�cially, and the two candidates with the most
votes will be elected, as long as a minimal quorum (initially 20%) is reached. Votes are
proportional to the number of rolls of tokens, with the same delegation mechanism
explained in the Proof-of-Stake section.

A stand-in council will be in place at the beginning of the network, for a period of
one year until the �rst election, expected for September 2020.

2.3 Treasury of Token Grants
The Dune Counil will be in charge of deciding which projects are to receive direct

grants (funds) from the Dune Foundation.
Additionnally, an on-chain “Community Treasury” will be used to provide token

grants to projects. Any project will be able to apply for such a grant; projects garnering
the most votes will be chosen.

The Treasury will be formed, in part, by tokens resulting of transaction rewards
received by the Dune Foundation and by the tokens directly allocated to the Treasury
through the Dune Council.

2.4 Referendum System
Protocol changes in the Dune Network software are decided by the Dune Council.
The Dune Network provides an on-chain mechanism for token owners to express

their opinion on the many decisions that have to be taken in the broad ecosystem that
Dune Network is going to become.

6

A referendum system will be developed to allow Dune’s users to submit proposals
for consideration. Initially, proposals will be informal (short questions), but we antic-
ipate for them to become more structured with adoption. With time, we anticipate
an ecosystem to appear around this referendum system, either to help discuss the
proposals in depth or as consistent parties to vote for them.

We also foresee the need at some point to decouple delegates for staking power
of validation of blocks in proof-of-stake (and its reward system) from the delegates
for staking power of voting, since �nancial incentives and general opinions may not
be both aligned with a single delegate for many people. A token holder may seek to
delegate its stake to a particularly-e�cient baker for rewards, whilst seeking a di�erent
delegate for their vision of the platform’s evolution.

3 Dune Smart Contract Languages
Focus: accessibility, attractivity, safety

The Dune Network aims to become a primary platform for blockchain-based
businesses to build on. Applications targeting such a platform usually include one or
more smart contracts on the blockchain. The programming languages used to write
such contracts su�er a trade-o� between expressivity, the ease of development, and
safety (and security).

While most blockchains choose of a particular language, or a virtual machine (VM)
only few languages can target, the Dune Network removes this trade o� by proposing
several programming languages by way of built-in support at the protocol level in the
blockchain. The goal here is to attract new developers through expressive, yet, less
secure Smart Contract languages, while allowing them, with experience, to switch
progressively to safer alternatives.

Here, we present Liquidity 2.0, an expressive, yet, safe language, Love, its VM with
long-term support in mind, DunePy, an easier target for new developers on Dune, and
all legacy languages from the Tezos ecosystem.

3.1 Liquidity 2.0
Liquidity 2.0 is an improved and updated version of the Liquidity language, intended

to be more powerful, like its ancestry language, OCaml, while still retaining the spirit
of its predecessor. Being a strongly typed language, it is type-safe, while retaining
conciseness and expressivenes thanks to a custom, static-type inference system. Similar
to the Liquidity language, both OCaml and ReasonML (created by Facebook) syntaxes
will be available. It adopts most of OCaml’s features, as well as Dune-speci�c extensions,
in particular, but not limited to:

• basic datatypes: integers, booleans, strings, amounts, keys, addresses, etc.

• composite datatypes: tuple, records, sums

• collections: lists, sets, maps

• iterators on collections: iter, fold, map

• recursive functions

• multiple entry points

7

• implicit storage through references

• storage accessors

• “library” modules

let [@storage] x = ref 0

let [@entry] incr () = x := !x + 1

let [@view] getCount () = !x

Figure 1: Simple Liquidity 2.0 program

Liquidity 2.0 facilitates the writing of contracts with multiple entry points. In
addition, it enables the implementation of custom libraries that can be used within
other contracts. The Liquidity 2.0 language is designed to be a living language; it
will continuously evolve by tracking the most recent state-of-the-art Smart Contracts
technologies. A Liquidity 2.0 contract consists of two components: a source code
de�ning the methods of the contract and the signature, specifying the type of each
entry point, and each public element.

3.2 Love VM — Long Term Support
Love (LOw-level language for Veri�cation and E�ciency) is a coreML language

designed to be Dune’s main Smart Contract target language. Contracts written in
Liquidity 2.0 are stored on the blockchain in this format, interpreted by the Dune
nodes. It is intended for Love to become a target language for many other higher-level
languages.

Figure 2: Love Integration as an intermediate language for multiple, type-safe, Smart
Contract languages

8

Love de�nes an easily understandable yet complete language from which any high-
level language (Solidity-like, Clarity, etc.) can be compiled to. In particular, it supports
all of Yul’s instructions, along with many OCaml-speci�c features. It provides several
notable features:

• Safety: Love contracts are guaranteed to be free of many classical bugs, thanks
to its strong static typing,

• Performance: Love contracts are executed e�ciently, thanks to its high-level
interpreter,

• Long Term Support: Love contracts will �nd unlimited (in time) support through
the Dune Network. Other languages on the Dune Network may not always be
backward compatible, but Love will always be.

Liquidity 2.0 is coupled with a compiler for Love.

3.3 DunePy
DunePy is a Python interpreter embedded in Dune which allows Smart Contracts

to be written in Python and to be executed directly on the blockchain. Smart contracts
written in DunePy are as simple and readable as standard Python programs. The
DunePy environment comes with a library containing speci�c values and functions
for Dune (i.e. cryptography, timestamps, DUN and contract operations, etc.). A simple
example of a DunePy program is given in Figure 3. To assist programmers in devel-
oping safe and secure Python-based Smart Contracts, DunePy o�ers a programming
environment for testing and simulating smart contracts whilst o�ine.

9

import Dune

class SimpleAuction:

def __init__(self, _beneficiary, _biddingTime):

self.beneficiary = _beneficiary

self.End = Dune.now + _biddingTime

self.hiBid = 0 # highest Bid

self.PR = {} # Pending Returns

def bid(self, msg):

assert Dune.now < self.End, 'Auction has ended'

assert msg.value > self.hiBid, 'Bid higher'

assert msg.sender != hiBidder

self.PR[self.hiBidder] = self.hiBid

self.hiBidder = msg.sender

self.hiBid = msg.value

def withdraw(self, msg):

assert msg.sender != hiBidder

assert self.PR[msg.sender] > 0

amount = self.PR[msg.sender]

self.PR[msg.sender] = 0

if not Dune.send(msg.sender, amount):

self.PR[msg.sender] = amount;

return False

return True

Figure 3: Simple auction in DunePy

3.4 Legacy Languages
Dune will retain the Michelson interpreter from Tezos, through which, it will

remain compatible with all languages that target Michelson, in particular:

Michelson. It is a strongly typed stack language with S-exp syntax. Tezos’ Smart
Contracts are directly stored in such a format on the blockchain. Although
Michelson features well-de�ned semantics, it is di�cult to use and expensive to
execute.

Liquidity 1.0. Liquidity 1.0 is the �rst high-level language developed on top of Michel-
son. Available with both, OCaml and ReasonML syntaxes, it features a decom-
piler to help auditing Michelson programs.

Ligo and SmartPy. These two recent, high-level languages are being developed
within the Tezos ecosystem. Ligo has a Pascal-like syntax and one that is close to
Liquidity 1.0, while SmartPy adopts a Python-like syntax; both of which compile
to Michelson.

However, developers are encouraged to switch to Love-based languages, so as to
take advantage of its expressiveness, e�ciency and long-term support.

10

Tooling for formal veri�cation of Love programs are on the medium-term roadmap
of the Dune Network.

4 Dune DUN Token and Tezos Airdrop
Focus: accessibility

Dune Network’s mainnet uses a token called DUN.

4.1 Initial Supply
An initial supply of 850 million DUNs has been pre-allocated when the network

was created, on June 24, 2019.
The initial supply is divided into the following
categories:

• 23,169,200 DUNs: Dune Foundation (2.7%)

• 48,360,000 DUNs: Development Team (5.7%)

• 40,300,000 DUNs: Business Team (4.8%)

• 40,300,000 DUNs: Investors (4.8%)

• 697,871,000 DUNs not a�ected (82.1%) Una�ected

Foundation
Devs
BusinessInvestors

The network con�guration halts reward generation until the public release, in
September 2019.The tokens allocated to the Development and Business teams are
contractually locked until September 2020.

4.2 Tezos Airdrop
At the beginning of September, Dune will airdrop DUN tokens to Tezos-holding

addresses, to create an extended set of potential users, given the expressed interest of
the Tezos community in Dune’s technology.

The airdrop will be performed as follows:

• A snapshot of all Tezos accounts will be taken at block number 600,000 of the
Tezos mainnet. This block is expected to be baked around Sep 7-8, 2019.

• A curation will be executed on the snapshot:

– All tokens held in originated accounts (KT-) will be moved to their associ-
ated manager account (tz-);

– All tokens held in accounts with a balance below 100 XTZ will be burnt;
– All tokens detained by the Tezos Foundation and associated parties will be

burnt, to prevent malicious use5.

• In the days after the snapshot, the accounts of the curated snapshot will be
credited on Dune Network. The commitments (Tezos ICO accounts not yet
activated) will be injected, too;

5We reserve the right to remove any account from the airdrop that threatens to cause disruptions to
the network.

11

• All DUN tokens not allocated during the snapshot will be moved to speci�c
contracts for the validator program. Such contracts will inhibit token movement,
rendering the tokens as burnt with respect to the circulating supply. These
tokens will be staked via blockchain validators chosen by the Dune Foundation,
to improve the stability and resilience of the network;

• Once the airdrop has been completed, the platform will launch to the community
via a public announcement, with a view to deter blind speculation of Tezos’ XTZ.

Expected supply after the airdrop: 806 millions
DUNs

• 23,169,200 DUNs: Dune Foundation (4.5%)

• 48,360,000 DUNs: Development Team (6%)

• 40,300,000 DUNs: Business Team (4.8%)

• 40,300,000 DUNs: Investors (4.8%)

• 653,870,800 DUNs: Tezos accounts (79.5%)

• 44,000,200 DUNs: Validators Program
Tezos holders

Validators
Foundation

Devs
BusinessInvestors

Early stakers and validators will hold approximately 25% of the network’s baking
power during the �rst months. This kernel, Dune anticipates, will be su�cient to keep
the network stable and live, with a maximal block time of 4 minutes between blocks
assuming a pessimistic outlook, and 1 minute with a more realistic and optimistic view.

5 Dune Performance and Management
The Dune Network aims to become one of the most distributed blockchains. Dis-

tribution is a cornerstone of censorship resilience. We expect to have several hundreds
of nodes running across the globe.

Dune Network currently implements three storage strategies for nodes:
• Light nodes or Rolling nodes are nodes that store only the most recent blocks, to

be able to reply to queries on the current state and validate new blocks limiting
resource utilization;

• Full nodes are nodes that store all of the blocks, but keep only the most recent
computed states. Such nodes only reply to queries on the current state, whilst
holding a complete copy of the blockchain;

• Archive nodes are nodes that store all of the blocks and all states. They are able
to reply to queries at any level of the blockchain’s history. These nodes are
typically used by block explorers and other data analysis websites.

Although such storage strategies can be e�ective at reducing storage for most
nodes at the beginning, Dune Network will also implement a new storage format,
called Ironmin, that reduces storage by several orders of magnitude compared to the
initial Tezos software, and improve performance of computation at similar levels.

Dune Network will also assist validators in securing their infrastructure. In par-
ticular, signing proxies will allow bakers to replicate their keys on multiple hardware
wallets, making their infrastructure more resilient to network and electrical failures.

12

6 Dune Subtokens and Standard Contracts
Focus: accessibility, attractivity

Dune Network aims at being used to incorporate other (sub-)tokens in addition to
DUN. Such (sub-)tokens will require some level of standardization within the ecosys-
tem, in particular, the interface and storage of their Smart Contracts. Ideally, such
contracts should be easy to interact with, from within the blockchain (from other
Smart Contracts) and from outside (block explorers, dApps and other tools).

Dune Network will work on the standardization of these Smart Contracts from the
beginning, providing, both, standard interfaces and open-source implementations for
these contracts in a public repository.

Dune Network will o�er avenues to ease the deployment and use of such sub-
tokens. In particular, Dune Network will enable interactions and transactions of
sub-tokens without any need to hold DUN tokens – the Smart Contract can pay for
fees with their own supply – something that is impossible in most other blockchains.

6.1 Preliminary Proposed Standard
The node and protocol of the Dune Network already supports Michelson as a

Smart Contract programming language, and Liquidity as a high-level, human readable,
language6.

The Dune Network does not consider other tokens as �rst class citizens of the
blockchain; the platform and its ecosystem will have full support from the core devel-
opers, so that anyone can seamlessly create and use their own tokens.

We have already designed and reviewed a proposed standard for creating fungible
tokens on the Dune Network. This standard is similar, in many ways, to the ERC20
standard7 on Ethereum.

The standard below describes an interface (or contract signature in Liquidity),
composed of entry points that must be implemented by any contract that follows the
standard.
contract type Token = sig

type storage

val%entry transfer : address * nat -> _

val%entry approve : address * nat * nat -> _

val%entry transferFrom : address * address * nat -> _

(* ------------- Storage access from outside ------------- *)

contract type BalanceForwarder = sig

type storage

val%entry main : nat -> _

end

val%entry balanceOf : address * BalanceForwarder.instance -> _

contract type AllowanceForwarder = sig

type storage

val%entry main : nat * nat -> _

6http://liquidity-lang.org
7https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

13

http://liquidity-lang.org
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

end

let%entry allowance : address * address * AllowanceForwarder.instance -> _

end

transfer

A call to transfer (dest, amount) transfers amount of tokens from the account of
the sender (i.e. Current.sender ()) to dest. This call must fail if the sender’s account
does not hold enough tokens to transfer.

approve

A call to approve (spender, old_amount, new_amount) allows spender to spend up
to new_amount of tokens from the account of the sender (i.e. Current.sender ()). This
call must fail if the new_amount is non zero and the old_amount is di�erent from the
previous allowance (this is made to prevent double spending from allowance).

transferFrom

A call to transfer (origin, dest, amount) transfers amount of tokens from the
account of origin to dest. This call must fail if the sender (i.e. Current.sender ()) is
not allowed to spend from origin or if its allowance is less than amount.

balanceOf and allowance

These are getter entry-points that do not modify (within their call, but not the
forwarder contract) the storage/state.

balanceOf (addr, forwarder) forwards the current balance of addr to the contract
forwarder. Typically, a forwarder contract is deployed for each outside contract C that
wants to interact with this token contract, and their only use is to forward a value to a
speci�c entry point of C.

Similarly, allowance (addr, origin, forwarder) forwards the current allowance
of addr on the origin account together with the balance of origin’s full account
contract to the contract forwarder.

6.1.1 Future Token Standards

The above proposed token standard is already useful for implementing cryptocur-
rencies, tokenization of some assets, etc. We want to propose and implement other
standards for non-fungible tokens, such as Ethereum’s ERC-721 or generic interfaces
for multiple tokens like ERC-1155. Such token standards will launch in a second phase
with input from the community and developers.

6.1.2 Standard in Liquidity 2.0

The new Smart Contract language Liquidity 2.0, is more �exible, e�cient and easier
to use; it is simpler to implement a token contract with it. In particular, it does not
su�er from the same limitations as Michelson, which Liquidity inherits.

14

One feature, which makes writing a token contract simpler, is the possibility to
de�ne and use pure functions. The following signature describes this standard in the
syntax of Liquidity 2.0
contract type Token = sig

val[@init] init : ’a -> unit

val[@entry] transfer : address -> nat -> unit

val[@entry] approve : address -> nat -> nat -> unit

val[@entry] transferFrom : address -> address -> nat -> unit

val[@view] balanceOf : address -> nat

val[@view] allowance : address -> nat * nat

end

The Dune Network will ensuring compatibility of interfaces, for both, the Liquidity
and the Liquidity 2.0 versions of the standard from a user perspective.

6.2 Modular Standards
In addition to sub-tokens, there are already some (but few) very common patterns

and use cases, in decentralized computation platforms, that can bene�t from standard-
ization. We aim to make each of these standards self-contained and composable by
restricting each interface to encapsulate features for a single functionality. Subtyping
at the contract signature level means that implementation for several standards can be
combined to form larger smart contracts.

We brie�y describe, in this section, some of the standards that we envision for the
decentralized application platform Dune.

Tokens

We have already described an interface for a fungible token standard. There are
several kinds of tokens that can be implemented using Smart Contracts, each of which
o�ering speci�c utility.

KYC

Recent regulatory advancements surrounding cryptocurrencies and blockchain
technology have pushed increasingly more platforms and services to require their
users to undergo a Know Your Customer (KYC) process.The regulatory measure consists
of essentially in verifying identities, subsequently, tying such records to electronic
records on/o�-chain. Most platforms o�er various levels of KYC, varying in layered
documental criteria, limiting the user in access as per their respective KYC approval.

When these records are re�ected on-chain, dApps and other Smart Contracts can
have access to this information.

Bond Issuance and Fundraising

Fundraising has recently become realistically-viable, with recent successes of
ICOs in the cryptocurrency space. Interestingly, fundraising, and more particularly

15

crowdfunding, is also a popular �nancial tool in a diverse array of communities
(including technology, art, healthcare, charitable organizations, etc.). Blockchains
provide ways to set up these kinds of initiatives in a completely decentralized fashion
(although not everything necessarily needs or bene�ts from decentralization), so
having standards can lower to barrier to entry for anyone who wishes to set-up or
take part in a fundraising campaign.

The major di�erence between the issuance of bonds and fundraising is that bonds
typically entails a reward through coupon payment or interests, granted periodically.
Bonds are tradable; they can also be seen as tokens representing �nancial assets that
render debt rights. Standardizing interfaces for such assets is exciting as it allows for
smoother interoperability for exchanges and greater liquidity.

Voting

Be it fundraising platforms, asset tokens, or bonds, participants (i.e., token holders)
often need to reach consensus on certain aspects (evolution, governance, ...). Some of
these consensuses can be achieved via voting.

An election generally follows the same pattern (vote proposition, voting phase,
votes tallying, and �nally, acting on the vote results). Some votes, have several rounds,
where the action is starting a subsequent election. Not all elections can take place on
a decentralized blockchain, for instance, situations where anonymity is important, or
where voting power cannot be enforced by the chain. It is, nonetheless, a powerful
tool which can be deployed in many cases.

An implementation of the Voting standard can usually be combined with a token
contract, tying voting power to ownership of tokens. It is common procedure to
�rst create a snapshot of the voting power which can in turn be represented with a
temporary sub-token – this means that voting power can be transferred.

contract type Vote = sig

type storage

val%entry createVote :

string (* name *) *
timestamp (* start_date *) *
timestamp (* end_date *) *
nat (* min_quorum *) *
(string, unit -> operation list) map (* actions *) -> _

val%entry vote : string (* vote_name *) * string (* vote_choice *) -> _

val%entry tallyVote : string (* vote_name *) -> _

end

createVote

A call to createVote (name, start_date, end_date, min_quorum, actions) initial-
izes a new vote on the contract which happens between start_date and end_date.
actions is a map from choices to lambdas (i.e. continuations).

16

vote

The vote entry point can be called by anyone, simply, specializing the ongoing vote
in which the caller wants to take part and his/her choice. Depending on the voting
mechanism in place, this call can fail if the person has already voted.

tallyVote

When tallyVote is called (with the name of the vote), the winning choice is
decided and the corresponding action (the lambda) is executed. Depending on the
voting mechanism in place, this call can fail if there is a draw. In all cases, the ongoing
vote is removed.

6.3 Integration with Wallets, Block Explorers and dApps
The Dune Foundation will ensure smooth integration of token standards. Tokens

that follow the prede�ned standard will be transferable using traditional Dune wallets
(i.e., these wallets will hold tokens). Block explorers will identify transfers of sub-
tokens, balances, etc.

The Dune Wallet, as well as the o�cial explorer, DunScan, will support all current
and future token standards.

6.4 Smart Contract Fees
A major factor that hinders adoption of sub-tokens that are developed on top of

other smart contract platforms, such as Tezos and Ethereum, is the need to hold the
platform’s native cryptocurrency to cover any transfer expenses (which are subject to
price �uctuations).

There are various solutions to this problem. Some of which are unsatisfactory; for
instance, paying transaction fees in amounts of sub-tokens is a sub-par solution as
this reduces the utility of the base cryptocurrency token and thus compromises on
the security of the Network. We propose for the token smart contract to pay for the
fees, e�ectively rendering interactions with it free for all users. This is an attractive
feature for dApps developers as they can be sure that Dune will not get in the way
of their platform. The aforementioned mechanism is implemented programmatically
by Smart Contract (the contract decides on the fees payable for a particular call); any
such expensed fees can be recovered (in e.g., sub-token amounts), should the developer
facilitate the option via the contract.

7 Dune’s Proof-of-Stake Consensus Algorithm
Focus: safety, governance
Dune Network uses the same consensus algorithm, Emmy+, as inherited from its

Tezos codebase.
Emmy+ is a Liquid Delegated Proof-of-Stake consensus: in Emmy+, token owners

are responsible for creating new blocks on the blockchain. This action is called baking
in Tezos’ terminology. They are also responsible for endorsing the blocks created by
other bakers. We encompass both of these actions into the generic term of validating
blocks on the network.

17

Precisely, for Dune Network, as for Tezos, at every block, a seed is used to generate
an in�nite list of bakers for the next block and a small set of endorsers (currently 32).
The list of bakers gives an order on baking rights, called priority, that allows them to
bake a new block after a short delay: the baker at priority 0 can bake a new block one
minute after the preceding block; the baker at priority 1 will have to wait a short while
longer, and so on.

The protocol takes stake into account to determine the bakers and endorsers: tokens
are gathered in groups of 10,000 DUN, in what is called a roll. The more rolls a baker
has, the more likely he/she is to be chosen for baking or endorsing.

Bakers and endorsers are rewarded if they perform well. A reward is granted for
every baked block and for every endorsement that is added to the blockchain. Fees
also are earned by bakers. However, they are punished for any wrong-doing: bakers
are required to o�er a collateral; should any rules be violated, namely, double-baking
or double-endorsing, penalties will be applied to the deposited funds. Overall, the
rewards create an annual in�ation, currently, set at a rate of 5%, approximately, per
year.

All of these mechanisms o�er a high guarantee against malicious actors forking
a long enough chain with a view to conduct malicious actions; all participants are
incentivised to follow the chain with the most staking power behind it, represented by
the �tness of the chain.

Finally, validating requires some infrastructure: validators need to run their own
nodes in a secured location to protect their cryptographic keys. Stake-holders may not
be interested in supporting such an infrastructure. Also, their token holdings may be
insu�cient to qualify for a full roll. In such cases, Emmy+ allows them to delegate their
tokens to other validators. Such delegations are usually done under some o�-chain
contract, whereby, the delegate will proportionally-share staking rewards to the token
holders in return for the additional staking power.

8 Dune Ecosystem
Focus: accessibility, attractivity, Safety
The Dune Network is based on Tezos’ software: it is backward-compatible with

Tezos; it expands on its predecessor’s technology to o�er superior features. Dune Net-
work inherits ecosystem: hardware and software wallets, baking software, compilers
and interoperability libraries.

The additionnal features primarily focus on accessibility: new powerful and easier
to use smart contract languages, a simpler and more realistic governance model, fee-less
Smart Contracts, etc.

8.1 Explorer and Wallets
Dune Network features a complete ecosystem around its blockchain, including:

• DunScan (https://dunscan.io/) is a complete block explorer, developed by
OCamlPro for Dune Network. It provides an intuitive interface for validators to
understand the protocol and the performance of their baker.

• Dune Documentation (https://docs.dune.network/) is a common hub to gather
all relevant documentation on Dune Network, for both end users, validators and
application developers.

18

https://dunscan.io/
https://docs.dune.network/

• Dune wallet (https://wallet.dune.network/) is a web wallet that interacts with
public and private nodes to perform transactions on the network.

• Dune Ledger App (https://ledger-app.dune.network/) is an application for
the hardware wallet, Ledger Nano S. A hardware wallet is essential to protect
cryptographic keys.

• Dune Metal (https://metal.dune.network/) is an extension of Google Chrome
and Firefox that manages cryptographic keys and sign transactions for dApps
on the Dune Network.

• Dune Testnet allows developers to test their applications on a full-featured
test network and create Testnet accounts using a Faucet (https://faucet.dune.
network/).

8.2 Bakers and Dapps
Validators are an essential part of the Dune Network. To help them set up nodes

and bakers, Dune Network provides several tools:

• Dune Baker Hub (https://baker-hub.dune.network) o�ers resources to support
the set up of a fully-secured baker on the Dune Network.

• Dune Snapshots (https://snapshots.dune.network) provides snapshots to initi-
ate fully functional nodes in minutes.

From the foundations of the projects architectural plan, our developers have built
dApps to understand the challenges arising in doing so. Consequently, we already
have a few of them deployed on the Dune Network:

• DrawIt (https://dapps.dune.network/draw-it/) is a very simple dApp that en-
ables the user to draw a picture stored on the blockchain; it’s displayed on
https://dunscan.io/

• Notarize (https://dapps.dune.network/notarize/) is a notarization tool; it al-
lows users to record their ownership of documents and scales to hundreds of
notarization acts per second.

• Okkad (https://dapps.dune.network/okkad/) is a stable-coin contract that al-
lows owners of the stable-coin to automatically convert their coins from and to
�at currencies.

8.3 Tezos Legacy
The Dune Network contains part of Tezos open-source software under the MIT

license, with extensions and modi�cations under the GPLv3 license, the free-software
license o�cially recommended by the Free Software Foundation. As a consequence,
most of the tools developed for Tezos should work without modi�cation to interact
with the kernel of Dune Network. Only speci�c, identi�ed, features of Dune Network
(new smart contract languages, new RPCs, etc.) will not be directly compatible. In
particular, all tooling developed around the Michelson languages, such as contracts
certi�ed with Mi-Cho-Coq can be used without alteration with Dune Network.

19

https://wallet.dune.network/
https://ledger-app.dune.network/
https://metal.dune.network/
https://faucet.dune.network/
https://faucet.dune.network/
https://baker-hub.dune.network
https://snapshots.dune.network
https://dapps.dune.network/draw-it/
https://dunscan.io/
https://dapps.dune.network/notarize/
https://dapps.dune.network/okkad/

8.4 Dune Validator Program
Focus: accessibility

The Dune Foundation will launch a Validator Program to facilitate onboarding
projects and bakers onto the Dune Network.

After the airdrop of September 2019, the DUN supply will be around 805 million
DUNs. 850 million DUNs were initially allocated in June 2019, all of which won’t
contribute towards the actual supply. Tokens that are not allocated during the airdrop
will be transferred to speci�c smart contracts, the Validator Contracts. Tokens on Val-
idator Contracts are locked forever. They are, by de�nition, not part of the circulating
supply. Instead, Validator Contracts can be delegated to Validators, as per the Validator
Program. Each Validator Contract has a balance of 900,000 DUNs.

Within the Validator Program, a project or a baker can apply for a Validator
Contracts delegation. If granted, the grantee will commit to keep 100,000 DUNs on a
baker account for at least the duration of the grant (one year, subject to change). For the
duration of the grant, the grantee will be delegated 900,000 DUNs. As a consequence,
the grantee can expect a baking reward of about 50,000 DUNs following a year.

The validator program will be used to support several kinds of grantees:

• Public Delegators: the Validator Program guarantees a minimal delegation to
bootstrap their activity;

• Community Projects: the Validator Program expects such projects to install
a baker, o�ering the corresponding rewards allowing for both supporting the
project and giving it voting power with respect to the evolution of the Dune
Network;

• Companies: the Validator Program o�ers companies a means of connecting with
the Dune ecosystem, a �rst step towards understanding how the Dune Network
functions, and some visibility (on DunScan for example);

9 Dune Development Team
Dune’s development team is a group of nine highly-skilled software developers,

most of whom, hold PhDs in Computer Science, heavily-experienced with OCaml -
the language in which Dune’s node is developed.

The team has a long experience in the sphere of blockchain technology, and in
particular the Tezos project, on which Dune is based. As former sta� of OCamlPro,
they were previously involved in the development of Tezos’ prototype. Since 2017,
the team has participated in improving the node for the launch of Tezos’ mainnet
in 2018, and in the development of Irontez, a dedicated version of Tezos for private
deployments.

The team has been deeply involved in the Tezos ecosystem, developing the TzScan
project, a popular Tezos block explorer on which DunScan is based, and the Liquidity
project, the most popular Smart Contract language on top of Michelson. Furthermore
the team has also worked on several projects targeting Tezos as a platform for their
dApps. Many improvements in Dune are born out of this experience.

20

10 Roadmap and Calendar
The Dune Network was started on June 24, 2019 for early investors only. It will

become public around September 10, 2019, after the airdrop of tokens from a Tezos
snapshot.

This roadmap positions our milestones in three periods: the Short Term targets
the public availability of Dune Network; the Medium Term targets the �rst year of
existence of Dune Network; �nally, the Long Term targets the following years.

10.1 Short Term (Public Release)
• Languages: Liquidity 2.0 on Love VM

• Web Wallet

• Complete Block Explorer, DunScan

• ERC20 Smart Contracts

• Validators’ Smart Contracts

• Metal Browser Extension

• Application for Hardware Wallet (Ledger Nano)

10.2 Medium Term (First Year)
• Languages: DunePy on Love VM

• Ecosystem contributed by the community with Dune Foundation’s support

• On-chain Governance for the Dune Council

• Community Treasury

• Tooling for dApps (on-chain authentication system, distributed storage, etc.)

10.3 Long Term
Rewriting the Dune node:

• Smart Contract Veri�cation Platform

• Tendermint or other BFT consensus algorithms, e.g., Algorand or HotStu�

• zk-SNARKs or other privacy layer

• New implementation in OCaml, with long term maintainability

• Implementation in other languages, for interoperability

21

	Dune Security and Safety
	Security through Programming Languages
	Formal Methods: Verification and Certification

	Dune On-Chain Governance
	The Dune Foundation
	On-Chain Elections for the Dune Council
	Treasury of Token Grants
	Referendum System

	Dune Smart Contract Languages
	Liquidity 2.0
	Love VM — Long Term Support
	DunePy
	Legacy Languages

	Dune DUN Token and Tezos Airdrop
	Initial Supply
	Tezos Airdrop

	Dune Performance and Management
	Dune Subtokens and Standard Contracts
	Preliminary Proposed Standard
	Future Token Standards
	Standard in Liquidity 2.0

	Modular Standards
	Integration with Wallets, Block Explorers and dApps
	Smart Contract Fees

	Dune's Proof-of-Stake Consensus Algorithm
	Dune Ecosystem
	Explorer and Wallets
	Bakers and Dapps
	Tezos Legacy
	Dune Validator Program

	Dune Development Team
	Roadmap and Calendar
	Short Term (Public Release)
	Medium Term (First Year)
	Long Term

